
Welcome to the Space Rocks Tutorial! Read on to learn about at Images,

Backgrounds, Intervals, timers, plugins, the micro:bit, Bluetooth

controls, explosions and displaying a score

If you Run your new App.

 You should see it says Hello on the screen.

 Press back arrow or the ‘Esc’ key to exit the app.

Find the word “Hello” and change it to 0.

Add a new line of code below the line that says ‘SetTextSize’.

Your code should now look like this!

Step 1 – Create your new App

Step 2 – Set the Score

Create a new JavaScript

App
Call it Space Rocks Click OK

//Called when application is started.

function OnStart()

{

 //Create a layout with objects vertically centered.

 lay = app.CreateLayout("linear", "VCenter,FillXY");

 //Create a text label and add it to layout.

 txt = app.CreateText("0");

 txt.SetTextSize(32);

 txt.SetTextColor("yellow");

 lay.AddChild(txt);

 //Add layout to app.

 app.AddLayout(lay);

}

Space Rocks

We need to download some images for our game

They can be found at - http://androidscript.org/tutorials/SpaceRocks/Images

You should now see them in the Images section

Now we need to add them to our project.

Step 3 – Find some Images….

Click on player.png

Right Click on the Picture

and then click Save Image

as…

Click OK

Click Back on your

Browser

Now do the same for

baddie.png, rock.png and

space.jpg

Until you have them all

saved!

Click on the icon to go to

the Assets section

Right Click on the Picture

and then click Save Image

as…

Find the folder, add the

player, rock and space

Images

http://androidscript.org/tutorials/SpaceRocks/Images

Add a new

SetBackground

line below the

line that says

‘CreateLayout’

like this:-

Now run your

app.

Find the word

“Linear” in your

program and

change it to

“Absolute”.

Type these 3

lines below the

line that says

‘AddChild’

Your complete

code should now

look like this:-

Now Run your App, You should see a player Image.

Before we add the code to our DroidScript project, we need to set up the micro:bit to

send messages to our device via Bluetooth.

First you need to go to https://microbit.org/code/

Step 4 – Change the Background

Step 5 – Add a Player

Step 6 – Connect to the BBC micro:bit

function OnStart()

{

 //Create a layout with objects vertically centered.

 lay = app.CreateLayout("linear", "VCenter,FillXY");

 lay.SetBackground("Img/space.jpg");

function OnStart()

{

 //Create a layout with objects vertically centered.

 lay = app.CreateLayout("Absolute", "VCenter,FillXY");

 lay.SetBackground("Img/space.jpg");

 //Create a text label and add it to layout.

 txt = app.CreateText("Hello");

 txt.SetTextSize(32);

 lay.AddChild(txt);

 //Create a player image.

 imgPlayer = app.CreateImage("Img/player.png");

 lay.AddChild(imgPlayer);

 //Add layout to app.

 app.AddLayout(lay);

}

https://microbit.org/code/

To use the BBC micro:bit, we must load a plugin, so add the

following line to the very top of your code:-

app.LoadPlugin("MicroBit");

Now we are all set up to code the button presses into our App.

Head back over to the wi-fi Editor for the next part!

At the top of the page, in the
Section about JavaScript Blocks

Editor, click Let’s Code

Once the editor Loads

open the Bluetooth block

selection

Select the Bluetooth

button service.

Drag it into the on start

block in your editor

Inside the Basic blocks,

grab the show string

command

Drag it above the

Bluetooth block in your

on start function and

change Hello to Ready

Now connect your micro:bit

with a micro USB to your

computer, and download

your script.

Right click on the

download and click

Show in folder.

Drag the file onto your

micro:bit

Paste the text into your code below the line that says ‘AddLayout’ (use the button at the top

of the screen to paste).

Your code should now look something like this:-

Open Google Play Store on
your device, and search for

microbit plugin

Install and Open the plugin

App.
Press Install

Restart DroidScript on

your device. Once it has

reopened press this icon

in the top right of the

Editor

Open the Docs to the

Plugin Section
Click on the micro:bit

Plugin

Click the Use JavaScript

Blocks Section

Locate the Detect button

presses section

Highlight and Copy the

bold section

 //Add layout to app.

 app.AddLayout(lay);

 microbit = app.CreateMicroBit();

 microbit.SetOnConnect(OnConnect);

 microbit.SetOnButton(OnButton);

 microbit.Scan();

}

Important: Please make sure you re-pair with your micro-bit each time a new hex file is

installed and then press the reset button after the pairing tick is shown (the reset button is on

the back of the micro:bit).

To pair with your micro-bit, hold down buttons A and B at the same time and briefly

press the reset button (on the back) while still holding down A and B. You should

then see the word 'Pairing' appear on the LEDs. You can then pair with the micro-bit

using the Android bluetooth settings page.

Now go back to the same micro:bit example and copy the OnConnect and OnButton

functions from the example and paste them into your code at the very bottom.

You should now have two functions at the bottom of your code like this:

Now run your app. You should be able to connect to the micro:bit when it appears in the

scan list.

Once connected, try pressing the micro:bit buttons. What happens?

function OnConnect()

{

 microbit.SetOnButton(OnButton);

}

function OnButton(name, state)

{

 txt.SetText(name + " : " + state);

}

Now let’s make

our player move

when the

buttons are

pressed.

Change the

OnButton

function to look

like this:-

We get 2 pieces

of info back from

the button…

It’s name, either

A or B.

And the state, 0

or 1. This tells us

whether the

button was

pressed down or

released.

What will

happen to the

variable

direction when

the buttons are

pressed?

Now we are

going to use the

setInterval

function to create

a timer that

updates the

screen every 20

milliseconds (so

we can move our

player around).

Change the

OnConnect

function to look

like this:-

Then we need to create a function called ‘Update’ which will be called by the

timer every 20 milliseconds.

Add a this new function at the very bottom of your program:-

Run your app and see what happens when you press the buttons

Step 7 – Take Control.

function OnConnect()

{

 microbit.SetOnButton(OnButton);

 y = 0.7; x = 0.4; direction = 0;

 updateTimer = setInterval(Update, 20);

 app.SetDebugEnabled(false);

}

function OnButton(name, state)

{

 if(state==1)

 {

 if(name=="A") direction = -1;

 else if(name=="B") direction = 1;

 }

 else direction = 0;

}

function Update()

{

 x += direction * 0.01;

 imgPlayer.SetPosition(x, y);

}

Your complete code should now look something like this:-

Step 8 – Check your Code

app.LoadPlugin("MicroBit");

//Called when application is started.

function OnStart()

{
 //Create a layout with objects vertically centered.

 lay = app.CreateLayout("Absolute", "VCenter,FillXY");

 lay.SetBackground("Img/space.jpg");

 //Create a text label and add it to layout.

 txt = app.CreateText("0");

 txt.SetTextSize(32);
 lay.AddChild(txt);

 //Create a player image.
 imgPlayer = app.CreateImage("Img/player.png");

 lay.AddChild(imgPlayer);

 //Add layout to app.

 app.AddLayout(lay);

 microbit = app.CreateMicroBit();

 microbit.SetOnConnect(OnConnect);
 microbit.SetOnButton(OnButton);

 microbit.Scan();

}

function OnConnect()
{

 microbit.SetOnButton(OnButton);

 y = 0.7; x = 0.4; direction = 0;

 updateTimer = setInterval(Update, 20);

 app.SetDebugEnabled(false);

}

function OnButton(name, state)

{
 if(state==1)

 {

 if(name=="A") direction = -1;
 else if(name=="B") direction = 1;

 }

 else direction = 0;
}

function Update()

{

 x += direction * 0.01;
 imgPlayer.SetPosition(x, y);

}

Now we need to create another timer to generate rocks for our

player to dodge, so add the following code to your OnConnect function

just below the line that says ‘SetInterval’:-

Tip: When typing the name of a known variable try writing the first

couple of letters and then pressing the <Alt> and <Space> keys at the

same time. It will give you a list of variable names to choose from.

Create a new function at the bottom of your code called AddRock

that will get called by our rockTimer every 1000 milliseconds like

this:-

Now run your app and see what happens.

Step 9 – Add Some Rocks

updateTimer = setInterval(Update, 20);

rocks = [];

 rockTimer = setInterval(AddRock, 1000);

function AddRock()

{

 var size = 0.1 + 0.1 * Math.random();

 var imgRock = app.CreateImage("Img/rock.png", size);

 rocks.push(imgRock);

 imgRock.x = Math.random();

 imgRock.y = 0;

 imgRock.SetPosition(imgRock.x, imgRock.y);

 lay.AddChild(imgRock);

}

function Update()

{

 x += direction * 0.01;

 imgPlayer.SetPosition(x, y);

 for(r in rocks)

 {

 rock = rocks[r];

 rock.y += 0.01;

 rock.SetPosition(rock.x, rock.y);

 if(rock.y > 1)

 {

 lay.DestroyChild(rock);

 Arr.remove(rocks, rock);

 }

 }

}

Next we need to

make the rocks

start falling

downwards, so

edit the

‘Update’

function to look

like this:-

Then Run your

App. Do the

rocks fall?

What would

happen if we

added 0.02 to

rock.y

instead?

At the moment the rocks just pass straight through our player, so we

need to make this more interesting by detecting when a rock collides

(overlaps) with our player image.

Type the following code into the ‘Update’ function just below the line

that says ‘rock.SetPosition’:-

Now run your app and see what happens when your player touches a rock.

Step 10 – Rock Fall

Step 11 – Collision

rock.SetPosition(rock.x, rock.y);

 if(rock.IsOverlap(imgPlayer, 0.03))

 {

 imgPlayer.Explode();

 app.ShowPopup("Game Over");

 clearInterval(updateTimer);

 clearInterval(rockTimer);

 }

 if(rock.y > 1)

score = 0;
Add this line of code

to the OnConnect

function after the line

that says
setInterval:-

score++;

txt.SetText(score);

Add these lines to

the ‘Update’ function

just below the line

that says

‘Arr.remove’:-

Now run your app.

You should see the

score change when

rocks pass by.

You’ve made it the end of our tutorial.

We have looked at Images, Backgrounds, Intervals,

timers, plugins, the micro:bit, Bluetooth controls and

displaying a score

Now play the game for a while and enjoy your hard

work! While your playing though there are a few more

things to think about. If you want to add some more stuff

see the next page for our Bonus Tasks

• Is the game too easy or too hard? See if you can work

out how to make it harder or easier by changing

some of the numbers.

• Can you work out how to change the rock size?

• How about changing the speed of the rocks?

• Can you make your player larger?

Congratulations you are finished.

Well done!

Step 12 – Update the Score

Step 13 – Play the Game and Improve it.

imgRock.y = 0;

imgRock.angle = 0;
We need to create a

property to store the

spin angle of each

rock, so add the this

line of code to the

‘AddRock’ function,

below the line that

says ‘imgRock.y =’

rock.SetPosition(rock.x, rock.y);

rock.angle += 10;

rock.Rotate(rock.angle);

Next we need to

make the rock rotate

a little each time the

screen is updated,

so add the following

two lines of code to

the ‘Update’

function, just below

the line that says

‘rock.SetPosition’.

Now run your app. Do you see the rocks spinning?

Try adjusting the amount added to the angle and see what happens.

Can you work out how to make the spin rate of each rock random?

1. Go back to the MicroBit plugin documentation.

2. Find and expand the ‘Detect movement’ example.

See if you can work out how to use the motion sensor to move your player instead of the

buttons.

Bonus Tasks

Task 1 – Spin the Rocks

Task 2 – Use the Motion Sensor

