
Welcome to the Space Rocks Tutorial! Read on to learn about Images,

Backgrounds, Intervals, timers, plugins, sensors, the accelerometer,

explosions and displaying a score

If you Run your new App by clicking the icon

 You should see it says Hello on the screen.

 Press back arrow to exit the app.

Open your App for editing by long pressing the icon, and selecting Edit from the Menu.

Find the word “Hello” and change it to 0.

Add a new line of code below the line that says ‘SetTextSize’.

Your code should now look like this!

Step 1 – Create your new App

Step 2 – Set the Score

Create a new JavaScript

App
Call it Space Rocks Click OK

function OnStart()

{

 //Create a layout with objects vertically centered.

 lay = app.CreateLayout("linear", "VCenter,FillXY");

 //Create a text label and add it to layout.

 txt = app.CreateText("0");

 txt.SetTextSize(32);

 txt.SetTextColor("yellow");

 lay.AddChild(txt);

 //Add layout to app.

 app.AddLayout(lay);

}

Space Rocks

We need to download some images for our game

They can be found at - http://androidscript.org/tutorials/SpaceRocks/Images

You should now see them in the Assets List.

Now we need to add them to our project.

Step 3 – Find some Images….

Click on player.png

Press and Hold on the

Picture and then click

Download Image

Click Back.

Now do the same for rock.png and

space.jpg

Click on the icon to go to

the Assets section

Click the + button to Add

Assets, then open your

Downloads Folder

Add your player, then

repeat these last 2 steps for

rock and space

http://androidscript.org/tutorials/SpaceRocks/Images

Add a new

SetBackground

line below the

line that says

‘CreateLayout’

like this:-

Now run your

app.

Find the word

“Linear” in your

program and

change it to

“Absolute”.

Type these 3

lines below the

line that says

‘AddChild’

Your complete

code should now

look like this:-

Now Run your App, You should see a player Image.

We are going to use the Accelerometer to control our player!

To access this, we need to create the sensor in our app, then we can read the values to tell

if the phone has been rotated!

Step 4 – Change the Background

Step 5 – Add a Player

Step 6 – Adding the Sensor

function OnStart()

{

 //Create a layout with objects vertically centered.

 lay = app.CreateLayout("linear", "VCenter,FillXY");

 lay.SetBackground("Img/space.jpg");

function OnStart()

{

 //Create a layout with objects vertically centered.

 lay = app.CreateLayout("Absolute", "VCenter,FillXY");

 lay.SetBackground("Img/space.jpg");

 //Create a text label and add it to layout.

 txt = app.CreateText("Hello");

 txt.SetTextSize(32);

 lay.AddChild(txt);

 //Create a player image.

 imgPlayer = app.CreateImage("Img/player.png");

 lay.AddChild(imgPlayer);

 //Add layout to app.

 app.AddLayout(lay);

}

Now paste the code into your OnStart function just below the line that says ‘AddLayout’

Like this :-

Now go back to the same Accelerometer example and click Copy All the sns_OnChange

function from the example and paste it into your code at the very bottom. Then delete

the OnStart function that came with it.

The bottom of your code should now look like this like this:

Once you have it in. Run your App. What happens when you rotate the phone, see if you

can work out which axis we want to read

Find the first example –

Accelerometer
Grab the bold part by clicking Copy

Open the Docs Select Reference Click All
Type Sensor into the

filter and Click the

CreateSensor

//Add layout to app.

 app.AddLayout(lay);

sns = app.CreateSensor("Accelerometer");

 sns.SetOnChange(sns_OnChange);

 sns.Start();

function sns_OnChange(x, y, z, time)

{

 txt.SetText("x="+x + "\n y="+y + "\n z="+z);

}

Check the top of your code looks like this. We are adding a few bits to the bottom so watch

out and make sure you don’t miss them!

Now let’s make our player move when the phone is tilted

Change the sns_OnChange function to look like this:-

We get 3 pieces of info back from the sensor…

The x, y, and z co-ordinates of the phone.

We are only concerned with the x, we want to alter the direction depending on whether it is

positive or negative.

What will happen to the variable direction when the phone is tilted?

Then we need to move the Player Image, we want it to move a tenth of the width of the

screen, in the direction we set with the sensor

Add a this new function at the very bottom of your program:-

Run your App and see what happens when you tilt the phone.

Firstly we need

to set up a base

line for our

Player’s x and y

positions and the

direction. So that

when the game

starts the player

is static and in

the middle of

the screen.

Change the

bottom of the

OnStart function

to look like this:-

Step 7 – Take Control and check your Code

//Called when application is started.

function OnStart()
{

//Create a layout with objects vertically centered.

 lay = app.CreateLayout("Absolute", "VCenter,FillXY");

 lay.SetBackground("Img/space.jpg");

 //Create a text label and add it to layout.

 txt = app.CreateText("Hello");

 txt.SetTextSize(32);
 lay.AddChild(txt);

 //Create a player image.
 imgPlayer = app.CreateImage("Img/player.png");

 lay.AddChild(imgPlayer);

 //Add layout to app.
 app.AddLayout(lay);

 sns = app.CreateSensor("Accelerometer");
 sns.SetOnChange(sns_OnChange);

 sns.Start();

 y = 0.7; x = 0.4; direction = 0;

}

function sns_OnChange(x, y, z, time)

{

 if (x > 0) direction = 1;
 else direction = 1;

 x += direction * 0.01;
 imgPlayer.SetPosition(x, y);

}

Now we need to create another timer to generate rocks for our

player to dodge, so add the following code to your OnStart function

just below the line that says ‘direction = 0’:-

Tip: When typing the name of a known variable try writing the first

couple of letters and then pressing the <Alt> and <Space> keys at the

same time. It will give you a list of variable names to choose from.

Create a new function at the bottom of your code called AddRock

that will get called by our rockTimer every 1000 milliseconds like

this:-

Now run your app and see what happens.

We are going to use another timer to make our rocks fall down the screen.

Add this like to your OnStart function just below the line that says ‘setInterval:-

Step 8 – Add Some Rocks

Step 9 – Rock Fall

rocks = [];

 rockTimer = setInterval(AddRock, 1000);

function AddRock()

{

 var size = 0.1 + 0.1 * Math.random();
 var imgRock = app.CreateImage("Img/rock.png", size);

 rocks.push(imgRock);

 imgRock.x = Math.random();

 imgRock.y = 0;

 imgRock.SetPosition(imgRock.x, imgRock.y);

 lay.AddChild(imgRock);

}

rockFallTimer = setInterval(MoveRocks, 20);

function MoveRocks()

{

 for(r in rocks)

 {

 rock = rocks[r];

 rock.y += 0.01;

 rock.SetPosition(rock.x, rock.y);

 if(rock.y > 1)

 {

 lay.DestroyChild(rock);

 Arr.remove(rocks, rock);

 }

 }

}

Next we need to

make the rocks

start falling

downwards, so

edit the

‘MoveRocks’

function to look

like this:-

Then Run your

App. Do the

rocks fall?

What would

happen if we

added 0.02 to

rock.y

instead?

At the moment the rocks just pass straight through our player, so we

need to make this more interesting by detecting when a rock collides

(overlaps) with our player image.

Type the following code into the ‘MoveRocks’ function just below the

line that says ‘rock.SetPosition’:-

Now run your app and see what happens when your player touches a rock.

Step 10 – Collision

rock.SetPosition(rock.x, rock.y);

 if(rock.IsOverlap(imgPlayer, 0.03))

 {

 imgPlayer.Explode();

 app.ShowPopup("Game Over");

 clearInterval(rockFallTimer);

 clearInterval(rockTimer);

 }

 if(rock.y > 1)

score = 0;
Add this line of code to the OnStart

function after the line that says
setInterval:-

score++;

txt.SetText(score);

Add these lines to the ‘MoveRocks’

function just below the line that says

‘Arr.remove’:-

Now run your app. You should see the

score change when rocks pass by.

The bottom of your code should now look like this:-

Step 11 – Update the Score

function MoveRocks()

{

 for(r in rocks)
 {

 rock = rocks[r];

 rock.y += 0.01;
 rock.SetPosition(rock.x, rock.y);

 if(rock.IsOverlap(imgPlayer, 0.03))
 {

 imgPlayer.Explode();

 app.ShowPopup("Game Over");

 clearInterval(rockFallTimer);

 clearInterval(rockTimer);
 }

 if(rock.y > 1)
 {

 lay.DestroyChild(rock);
 Arr.remove(rocks, rock);

 score++;

 txt.SetText(score);
 }

 }

}

function AddRock()
{

 var size = 0.1 + 0.1 * Math.random();

 var imgRock = app.CreateImage("Img/rock.png", size);
 rocks.push(imgRock);

 imgRock.x = Math.random();
 imgRock.y = 0;

 imgRock.SetPosition(imgRock.x, imgRock.y);

 lay.AddChild(imgRock);

}

You’ve made it the end of our tutorial.

We have looked at Images, Backgrounds, Intervals,

timers, plugins, sensors, the accelerometer, explosions

and displaying a score

Now play the game for a while and enjoy your hard

work! While your playing though there are a few more

things to think about. If you want to add some more stuff

see the next page for our Bonus Task

• Is the game too easy or too hard? See if you can work

out how to make it harder or easier by changing

some of the numbers.

• Can you work out how to change the rock size?

• How about changing the speed of the rocks?

• Can you make your player larger?

Congratulations you are finished.

Well done!

Step 12 – Play the Game and Improve it.

imgRock.y = 0;

imgRock.angle = 0;
We need to create a

property to store the

spin angle of each

rock, so add the this

line of code to the

‘AddRock’ function,

below the line that

says ‘imgRock.y =’

rock.SetPosition(rock.x, rock.y);

rock.angle += 10;

rock.Rotate(rock.angle);

Next we need to

make the rock rotate

a little each time the

rocks move, so add

the following two

lines of code to the

‘MoveRocks’

function, just below

the line that says

‘rock.SetPosition’.

Now run your app. Do you see the rocks spinning?

Try adjusting the amount added to the angle and see what happens.

Can you work out how to make the spin rate of each rock random?

Bonus Task

Task – Spin the Rocks

