
DroidScript Gameview

Tutorial - Flappy Dino Part 1

Setting up a New Game – From the Web Editor:

First you will need to

launch DroidScript and

connect to the Wi-Fi

editor. From here open

the apps view and

select ‘New Javascript

App’.

This will bring up a box where

you can choose the name for

your app and choose the type.

Make sure you select ‘Game’

from the drop down menu.

Once you click OK, your new app will be

opened. There will be two files in a Game

app, the first is used to set up the game in

DroidScript (called My Game.js) and the

second is the actual game code

(Bounce.js).

When you create a new game, there is an

example game in the file called bounce.js.

You can test this by pressing the play

button at the top of the code window.

Setting up a New Game – From the Mobile App:

Click the menu button in the top

right-hand corner and select

“New”.

When the “New App” dialog

appears, Give your new game a

name and make sure that the

drop down menus show “Native

and “Game”. You can then click

OK and your game will be

created.

The app will then take you back to

the home screen were you should

be able to see the icon for your new

app. Long press on this icon to

bring up the Actions menu. Select

the first option “Edit”.

The editor will then open where

you will see the code for a demo

app. This can either be edited or

deleted. In every Game type of app,

there are two script files. These can

be switched between by pressing

the button with the file name at the

top centre.

To run the demo game in the app,

the play button is at the bottom

right hand corner.

Setting up a New Game – Creating new game files

For the remainder of this tutorial we will assume you

are using the web editor.

Now you have created your new game and played with

the demo script, we need to modify it so we can start

building our own game.

At the top you will see two files, one with the game

name and another called Bounce.js. We don’t need the

Bounce.js file any more as we will create our own new

game file so press the trash can symbol on the tab to

delete it. A popup will ask if you’re sure, click OK.

Next we need to add our own file. To do this click on the

“+” symbol on the left hand side. This will bring up the

“New File” popup. Give your file a name and press “OK”.

A game will always need these two files. The first is the

main program that creates the app and launches the

came code, and the second is the file that actually

contains the game code.

The last thing we need to do to set up the game is change the name of the game file in the first script

from “bounce.js” the name of our new file. Here it is “gamefile.js”. We are now ready to start

building a game! All of the following code will be written in the game file.

Lesson 1 – Anatomy of the Game

OnLoad, OnReady, OnAnimate

Every game requires three main functions in order to run:

OnLoad() – This is the first thing will run when the game is

launched, this is where graphical objects, sounds,

backgrounds and physics should be created.

OnReady() – This is executed when OnLoad() function has

finished running. Here the graphical objects, backgrounds,

sounds etc. are added to the GameView with their

appropriate settings. Once everything has been set up, calling

the ‘gfx.Play()’ function will start the game running.

OnAnimate() – This function is repeatedly called, around 60

times per second. This is where you update the position of

backgrounds and graphical objects.

Copy this code into the game file you created. If you run the

app now by pressing the play button, there should be no

errors but nothing will happen as there is nothing in the functions yet.

//Handle game loading.
function OnLoad()
{

}

//Called when game has loaded.
function OnReady()
{
 //Start the game.
 gfx.Play()
}

//Update game objects.
//(called for every frame)
function OnAnimate(time, timeDiff)
{

}

Lesson 2 – Adding Assets

To build a game we will

need images for the

background and

characters (Sprites) as

well as sound effects.

To add these, click the

“Assets” button on the

left-hand side.

From there you can add

images and sounds by

pressing the upload

button. Find the files on

your computer, select

them all and press

“Open”.

Next do the same for the sound files.

All the files for this tutorial will be available

to download.

The files needed are listed below and can

be found at:

http://androidscript.org/tutorials/assets/

http://androidscript.org/tutorials/assets/

Lesson 3 – Creating Backgrounds
gfx.CreateBackground(), gfx.AddBackground()

The next step to creating a game is choosing, creating and adding a background. This requires two

lines of code, one in the OnLoad() function like this:

And one in the OnReady() function which adds the previously created background to the GameView,

like this:

The file name must match the name of the Assets we added in the previous step. If you try running

the app now, you should see the background image appear.

//Handle game loading.
function OnLoad()
{

//Create background (and stretch it to full screen).
sky = gfx.CreateBackground("Img/flappy_back.jpg", "stretch")

}

//Called when game has loaded.
function OnReady()
{

//Set background.
 gfx.AddBackground(sky)

 //Start the game.
 gfx.Play()

}

Lesson 4 – Scrolling Backgrounds

img.Scroll()

Some games will use a still background, but most will use a scrolling background to give the

impression of the player moving through an environment. The Scroll(x, y) function is given two

values, of the amount moved in each direction.

All size and position values when building a game are given as fractions of the total screen width; this

is so that it can be played on any device regardless of the screen size and orientation. Here the sky

image is scrolled to the left by 2% of the total screen width, each time the frame is updated.

Add the above code to the “OnAnimate” function and if you run the app, this time you should see

the background scrolling to the left.

//Update game objects.
//(called for every frame)
function OnAnimate(time, timeDiff)
{
 //Make background slide to the left a small amount.

sky.Scroll(-0.002, 0)

}

Lesson 5 – Adding Characters (Sprites)

gfx.CreateSprite(), gfx.AddSprite()

Characters in the game are known as sprites. These need to be added in the same way as the

background, created in the OnLoad() function and added to the GameView in the OnReady()

function.

 The numbers after ‘dino’ when adding the sprite show the x and y position that the image will

appear on the screen. These positions are given as fractions of the screen width and height away

from the top left hand corner. This corner would have a position of 0,0.

//Handle game loading.
function OnLoad()
{

//Create background (and stretch it to full screen).
sky = gfx.CreateBackground("Img/flappy_back.jpg", "stretch")

//Create graphical objects.
dino = gfx.CreateSprite("Img/dino_fly_783x136x3x1", "dinos")

}

//Called when game has loaded.
function OnReady()
{

//Set background.
 gfx.AddBackground(sky)

//Add dino image
 gfx.AddSprite(dino, 0.1, 0.3, 0.15)

//Start the game.
 gfx.Play()
}

Lesson 6 – Sound Effects

gfx.CreateSound(), snd.Play()

Sounds effects and game music are also created in the OnLoad() function. When you want to play

the sound, you use ‘.Play’. If the sound is game music it can be called in the OnReady() function, or if

it is a sound effect you would call it in the OnAnimate() function. Here is an example of game music:

//Handle game loading.
function OnLoad()
{

//Create background (and stretch it to full screen).
sky = gfx.CreateBackground("Img/flappy_back.jpg", "stretch")

//Create graphical objects.
dino = gfx.CreateSprite("Img/dino_fly_783x136x3x1", "dinos")

//Create sounds.

 jungle = gfx.CreateSound("Snd/jungle.mp3")
}

//Called when game has loaded.
function OnReady()
{

//Set background.
 gfx.AddBackground(sky)

//Add dino image
 gfx.AddSprite(dino, 0.1, 0.3, 0.15)

//Play looping background sound.
jungle.Play(true)

//Start the game.

 gfx.Play()
}

Lesson 7 – Character Animation – Sprite Sheets

Sprite Animation

Characters that have repeating

movements can be created using

‘Sprite Sheets’. These are images that

are made up of a series of smaller

pictures that are cycled through repeatedly.

The game engine knows how to split this image up using the details in the file name. For example

the sheet shown here has the filename: ‘dino_fly_783x136x3x1’ The numbers after the name state

that the total image size is 783x136 and the frames are split into 3 columns and 1 row.

If the filename has no extension (.png) the game engine will assume the image is a sprite sheet.

//Called when game has loaded.
function OnReady()
{
//Set background.
 gfx.AddBackground(sky)

//Add dino image
 gfx.AddSprite(dino, 0.1, 0.3, 0.15)

//Play looping background sound.
jungle.Play(true)

//Start animations
dino.Play(0, 0.25)

//Start the game.

 gfx.Play()

}

Lesson 8 – Character Animation – Movement

We can now add a second sprite to make an enemy in the game.

Character Movement

To animate your character, you will need to change its position each time the frame updates. In the

example below the ‘croc’ object is shifted by 0.4% of the screen width to the left (-x direction).

An alternative and faster way to write ‘croc.x = croc.x - 0.004’ would be: ‘croc.x -= 0.004’.

 //Update game objects.
//(called for every frame)
function OnAnimate(time, timeDiff)
{
 //Make background slide to the left a small amount.
 sky.Scroll(-0.002, 0)

 //Slide croc to left.
 croc.x = croc.x - 0.004
}

//Handle game loading.
function OnLoad()
{
 //Create background (and stretch it to full screen).
 sky = gfx.CreateBackground("Img/flappy_back.jpg", "stretch")

 //Create graphical objects.
 dino = gfx.CreateSprite("Img/dino_fly_783x136x3x1", "dinos")
 croc = gfx.CreateSprite("Img/crocs_149x686x1x2", "enemies")

 //Create sounds.
 jungle = gfx.CreateSound("Snd/jungle.mp3")
}

//Called when game has loaded.
function OnReady()
{
 //Set background.
 gfx.AddBackground(sky)

 //Add dino image
 gfx.AddSprite(dino, 0.1, 0.3, 0.15)
 //Add enemy sprites.
 gfx.AddSprite(croc, 0.8, 0.55, 0.12)

 //Start animations
 dino.Play(0, 0.25)
 croc.Play(0, 0.05)

 //Play looping background sound.
 jungle.Play(true)

 //Start the game.
 gfx.Play()
}

Lesson 9 – Putting it All Together (So Far)

Before we are ready to move onto the next feature, we need to test what we have learnt so far. The

following code includes all the features covered so far and should produce a flapping dino in front of

a scrolling background. A croc will also appear and move across the screen when the app is first run.

The ‘gfx.Play()’ function is what sets the whole game rolling.

So far the player does not have any control and there is no way of detecting collisions between the

dino and croc. This will be covered in the next lesson.

//Handle game loading.
function OnLoad()
{
 //Create background (and stretch it to full screen).
 sky = gfx.CreateBackground("Img/flappy_back.jpg", "stretch")

 //Create graphical objects.
 dino = gfx.CreateSprite("Img/dino_fly_783x136x3x1", "dinos")
 croc = gfx.CreateSprite("Img/crocs_149x686x1x2", "enemies")

 //Create sounds.
 jungle = gfx.CreateSound("Snd/jungle.mp3")
}

//Called when game has loaded.
function OnReady()
{
 //Set background.
 gfx.AddBackground(sky)

 //Add dino image (with physics)

gfx.AddSprite(dino, 0.1, 0.6, 0.15)

 //Add enemy sprites.
 gfx.AddSprite(croc, 0.8, 0.55, 0.12)

 //Start animations
 dino.Play(0, 0.25)
 croc.Play(0, 0.05)

 //Play looping background sound.
 jungle.Play()

 //Start the game.
 gfx.Play()
}

//Update game objects.
//(called for every frame)
function OnAnimate(time, timeDiff)
{
 //Make background slide to the left a small amount.
 sky.Scroll(-0.002, 0)

 //Slide croc to left.
 croc.x = croc.x - 0.004
}

Lesson 10 – Basic Collisions

To make this a game there must be a way to win or lose. Here the game is lost if the player collides

with an enemy or the ground. To detect the collision between two objects, the simplest method is to

detect when two images on the screen overlap. This is achieved using the ‘IsOverlap()’ function.

We also need to add the sound effect that plays when the

dino collides with a croc and change the sprite sheet to the

crashed dino.

To test this you can change the Y position of the dino in

“OnReady()” from 0.3 to 0.5 meaning the dino will start

lower and crash into the croc as it comes past.

//Global variables
var gameOver = false

//Handle game loading.
function OnLoad()
{
 //Create background (and stretch it to full screen).
 sky = gfx.CreateBackground("Img/flappy_back.jpg", "stretch")

 //Create graphical objects.
 dino = gfx.CreateSprite("Img/dino_fly_783x136x3x1", "dinos")
 croc = gfx.CreateSprite("Img/crocs_149x686x1x2", "enemies")
 crash = gfx.CreateSpriteSheet("Img/dino_crash_920x138x4")

 //Create sounds.
 jungle = gfx.CreateSound("Snd/jungle.mp3")
 crunch = gfx.CreateSound("Snd/crunch.mp3")
}

function OnAnimate(time, timeDiff)
{
 //Make background slide to the left a small amount.
 sky.Scroll(-0.002, 0)

 //Slide croc to left.
 croc.x = croc.x - 0.004
 if(gfx.IsOverlap(dino, croc, 0.03) && !gameOver)
 {
 Crash()
 }
}

//Crash our character and end the game.
function Crash()
{
 //Switch sprite sheets and change play speed.
 dino.SetSpriteSheet(crash)
 dino.Play(0, 0.1)

 //Play crunch sound and prevent scroll.
 crunch.Play()

 //Set gameover state.
 var gameOver = true
}

Lesson 11 – Touch Control

Next we need a way to avoid crashing into the croc. The OnControl() function can be used to detect

when the player touches the screen. If the following function is added to the bottom of the game

code, every time the screen is touched, the dino moves up the screen.

If we try the game now, we can avoid the croc but there is nothing to bring our dino back down

again. To make the game more fun, add this line to the OnAnimate function:

Now our dino will drift downwards towards the ground making it harder to avoid the crocs.

//Handle screen touches and key presses.
function OnControl(touchState, touchX, touchY, keyState, key)
{
 //Increase dino's upward velocity when screen touched.
 if(touchState=="Up" && !gameOver) dino.y-= 0.03
}

//Update game objects.
//(called for every frame)
function OnAnimate(time, timeDiff)
{
 //Make background slide to the left a small amount.
 sky.Scroll(-0.002, 0)

 //Slide croc to left and move dino downwards.
 croc.x = croc.x - 0.004
 dino.y+= 0.001

 if(gfx.IsOverlap(dino, croc, 0.03) && !gameOver)
 {
 Crash()
 }

}

Lesson 12 – Scoring

Now we can avoid the croc we should do two things: add more crocs and keep track of how many

we have avoided. To do this we can detect when the croc has gone off the edge of the screen and

reset its position to the other end of the screen, and when this happens, add 1 to a score variable.

To do this first we need to add some text to the game to display the score. There are two font files,

(Desyrel.png and Desyrel.xml) that must be saved in the same folder as the images. You will need to

select the file type as “All Files” otherwise you will not be able to find it.

The score variable must be outside the function – making it a ‘global variable’ which means any part

of the program can see its value.

//Global variables
var gameOver = false
var score = 0
function OnLoad()
{
 //Create background (and stretch it to full screen).
 sky = gfx.CreateBackground("Img/flappy_back.jpg", "stretch")

 //Create graphical objects.
 dino = gfx.CreateSprite("Img/dino_fly_783x136x3x1", "dinos")
 croc = gfx.CreateSprite("Img/crocs_149x686x1x2", "enemies")
 crash = gfx.CreateSpriteSheet("Img/dino_crash_920x138x4")

txt = gfx.CreateText(score.toString(), 0.1, "Img/Desyrel.xml")

 //Create sounds.
 jungle = gfx.CreateSound("Snd/jungle.mp3")
 crunch = gfx.CreateSound("Snd/crunch.mp3")
}

//Called when game has loaded.
function OnReady()
{
 //Set background.
 gfx.AddBackground(sky)

 //Add dino image
 gfx.AddSprite(dino, 0.1, 0.5, 0.15)

 //Add enemy sprites.
 gfx.AddSprite(croc, 0.8, 0.55, 0.12)

 //Start animations
 dino.Play(0, 0.25)
 croc.Play(0, 0.05)

 //Add score text
 gfx.AddText(txt, 0, 0)

 //Play looping background sound.
 jungle.Play(true)

 //Start the game.
 gfx.Play()
}

 This next section of code makes the crocs reappear at the right edge of the screen once they have

disappeared and adds one to the score each time this happens.

//Update game objects.
//(called for every frame)
function OnAnimate(time, timeDiff)
{
 //Make background slide to the left a small amount.
 sky.Scroll(-0.002, 0)

 //Slide croc to left and move dino downwards.
 croc.x = croc.x - 0.004
 dino.y+= 0.001

 if(gfx.IsOverlap(dino, croc, 0.03) && !gameOver)
 {
 Crash()
 }

 //If croc has gone off left side of screen.
 if(croc.x < -croc.width)
 {
 //Move the croc back to the right hand side.
 croc.x = 1

 //Scale croc with a random value.
 var height = 0.4 + Math.random()*0.4
 croc.SetSize(null, height)
 croc.y = 1 - croc.height
 score++
 txt.SetText(score.toString())
 }
}

Lesson 13 – Game Over!

To make more of a dramatic end to the game, a simple

way to add a game over screen is to add a ‘game over’

image and a game over sound effect to the assets.

All we then need to do is add the game over image over the top of everything else when the dino

crashes. To do this we create a new function called “GameOver()” do add the image and play the

sound and call this function 1 second after the dino crashes.

The “setTimeout()” function calls another function after a specified delay in milliseconds.

//Crash our character and end the game.
function Crash()
{
 //Switch sprite sheets and change play speed.
 dino.SetSpriteSheet(crash)
 dino.Play(0, 0.1)

 //Play crunch sound and prevent scroll.
 crunch.Play()
 setTimeout(GameOver, 1000)
 //Set gameover state.
 gameOver = true

}

function GameOver()
{
 gfx.AddSprite(gameover, 0, 0, 1, 1)
 //Play 'game over' sound after half a second.
 end.Play(false, 500)
}

//Handle game loading.
function OnLoad()
{
 //Create background (and stretch it to full screen).
 sky = gfx.CreateBackground("Img/flappy_back.jpg", "stretch")
 //Create graphical objects.
 dino = gfx.CreateSprite("Img/dino_fly_783x136x3x1", "dinos")
 croc = gfx.CreateSprite("Img/crocs_149x686x1x2", "enemies")

 gameover = gfx.CreateSprite("Img/gameover.jpg", "gameover")

 crash = gfx.CreateSpriteSheet("Img/dino_crash_920x138x4")
 txt = gfx.CreateText(score.toString(), 0.1, "Img/Desyrel.xml");
 //Create sounds.
 jungle = gfx.CreateSound("Snd/jungle.mp3")
 crunch = gfx.CreateSound("Snd/crunch.mp3")
 end = gfx.CreateSound("Snd/game_over.mp3")
}

Everything so far!

By now we should have a very simple playable game. The full code is given here showing everything

we have learned so far:

(Continued on the following page)

//Global variables
var gameOver = false
var score = 0
//Handle game loading.
function OnLoad()
{
 //Create background (and stretch it to full screen).
 sky = gfx.CreateBackground("Img/flappy_back.jpg", "stretch")

 //Create graphical objects.
 dino = gfx.CreateSprite("Img/dino_fly_783x136x3x1", "dinos")
 croc = gfx.CreateSprite("Img/crocs_149x686x1x2", "enemies")
 crash = gfx.CreateSpriteSheet("Img/dino_crash_920x138x4")
 txt = gfx.CreateText(score.toString(), 0.1, "Img/Desyrel.xml")

 gameover = gfx.CreateSprite("Img/gameover.jpg", "gameover")

 //Create sounds.
 jungle = gfx.CreateSound("Snd/jungle.mp3")
 crunch = gfx.CreateSound("Snd/crunch.mp3")
 end = gfx.CreateSound("Snd/game_over.mp3")
}

//Called when game has loaded.
function OnReady()
{
 //Set background.
 gfx.AddBackground(sky)

 //Add dino image
 gfx.AddSprite(dino, 0.1, 0.5, 0.15)
 //Add enemy sprites.
 gfx.AddSprite(croc, 0.8, 0.55, 0.12)

 //Start animations
 dino.Play(0, 0.25)
 croc.Play(0, 0.05)

 //Add score text
 gfx.AddText(txt, 0, 0);

 //Play looping background sound.
 jungle.Play(true)

 //Start the game.
 gfx.Play()
}

End of Part 1, see Part 2 for more advanced game features such as physics!

/Update game objects.
//(called for every frame)
function OnAnimate(time, timeDiff)
{
 //Make background slide to the left a small amount.
 sky.Scroll(-0.002, 0)

 //Slide croc to left and move dino downwards.
 croc.x = croc.x - 0.004
 dino.y+= 0.001

 if(gfx.IsOverlap(dino, croc, 0.03) && !gameOver)
 {
 Crash()
 }

 //If croc has gone off left side of screen.
 if(croc.x < -croc.width)
 {
 //Move the croc back to the right hand side.
 croc.x = 1

 //Scale croc with a random value.
 var height = 0.4 + Math.random()*0.4
 croc.SetSize(null, height)
 croc.y = 1 - croc.height
 score++
 txt.SetText(score.toString())
 }
}

//Handle screen touches and key presses.
function OnControl(touchState, touchX, touchY, keyState, key)
{
 //Increase dino's upward velocity when screen touched.
 if(touchState=="Up" && !gameOver) dino.y-= 0.03
}

//Crash our character and end the game.
function Crash()
{
 //Switch sprite sheets and change play speed.
 dino.SetSpriteSheet(crash)
 dino.Play(0, 0.1)

 //Play crunch sound and prevent scroll.
 crunch.Play()
 setTimeout(GameOver, 1000)
 //Set gameover state.
 gameOver = true
}

function GameOver()
{
 gfx.AddSprite(gameover, 0, 0, 1, 1)
 //Play 'game over' sound after half a second.
 end.Play(false, 500)
}

